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Abstract. For an arbitrary classical gas of particles in which the interaction is given by a 
many-body, stable, regular and strongly regular potential we prove the uniqueness and 
analyticity of the grand canonical tempered Gibbs state for every value of the chemical 
activity such that z-l .E {spectrum of the Kirkwood-Salsburg operator}. 

1. Introduction 

Our knowledge of the structure of the set of Gibbs equilibrium states describing 
continuous systems of classical particles at thermal equilibrium in the region of large 
values of the chemical activity or at low temperatures is still very incomplete. Some 
recent advances include results for a class of generalised Widom-Rowlison type of 
models (Bricmont etal 1984, 1985, Ruelle 1971) and the charged but neutral two- 
component systems, in which the interaction is given by a sufficiently regular function 
of positive type (Gielerak 1986, 1987a). This is in contrast to the high-temperature, 
low-density region where the uniqueness of the tempered Gibbs grand canonical states 
has been known for a long time (Ruelle 1969). 

It was Mayer (1942) who first conjectured the connection between phase transitions 
and the spectral properties of the Kirkwood-Salsburg operator. Later, Lee and Yang 
(Yang et a1 1952) discussed the connection between zeros of the partition function 
and phase transitions. However, the spectral analysis of the Kirkwood-Salsburg 
operator, as well as the study of the location of zeros of the partition function, are 
very difficult and only a few results have been established (Pastur 1974, Moraal 1975, 
1977, 1981, Klein 1975, Zagrebnov 1982a, Gorzelanczyk 1985) all of which concern 
the finite-volume situation or low-activity regions. 

In this paper we put the Mayer-Lee-Yang hypothesis on a rigorous mathematical 
footing. We consider systems of particles, located in R d  at thermal equilibrium, in 
which the interaction is given by an arbitrary many-body interaction, V,  which we 
assume to be stable and regular in a sense which we will explain below. The correspond- 
ing Gibbs distribution is completely described by its correlation functions. Following 
Moraal (1976) we derive generalised Kirkwood-Salsburg identities between them and 
we prove in a rigorous mathematical way that for values of the chemical activities, 
z - l ,  that do not belong to the spectrum of the corresponding (generalised) Kirkwood- 
Salsburg operator there exists a unique infinite-volume grand canonical Gibbs state 
and, moreover, that this state is analytic in z in the sense that all of its moments are 

0305-4470/89/010071+ 13302.50 @ 1989 IOP Publishing Ltd 71 



72 R Gielerak 

analytic. Thus we have localised the set of possible critical values of z as a (subset) 
of the spectrum of the corresponding Kirkwood-Salsburg operator. This justifies the 
Mayer hypothesis. The precise formulation of this result is given in 3 2 of this paper 
and the proof is given in 3 3. 

2. Formulation of the result 

Let R be the collection of all finite or countable subsets of R d  having no limit points 
in Rd. R is provided with the weakest topology r in which the map 

is continuous for any open bounded Borel subset A c  R d ,  where R f ( R d )  (respectively 
Rf(A)) is the collection of all finite subsets w = Rd (respectively w = A) with the 
point-to-point convergence topology r f .  The (+ algebra(s) corresponding to Tf (=Bore1 
(+ algebra) we will denote by ?Fr(Rf) (respectively S f ( R f ( h ) )  = %,(A)). 

The pair (R, T )  then forms a Polish space (Ngyen and Zessin 1979). The correspond- 
ing Borel (+ algebra is denoted by $( R d ) .  In a similar fashion we define the IT algrebras 
S(di), where A is an arbitrary Borel subset of Rd. Clearly 9 ( A , )  = %(A,) provided 
A, c A, and moreover, for AI U h2 with A I  n A, = M, we have 2 F ( h , )  = $(A,)@ 9(A,).  
Let 7;; be a corresponding free gas Poisson distribution (not normalised) on the 
inductive system (R, 9, R(A), 9 ( A ) )  with the chemical activity z 5 0. Let V be an 
arbitrary, real measurable function defined on R f ( R d )  and such that 

~ : f l 3 w + w ( A ) =  w nAER,(A) (2.1) 

.. .. 
w ' # B  

where { V.. .} is a sequence of real measurable functions which are symmetric on Rnd 
and are associated with V in a standard way, i.e. V =  (VI ,  V,, V,, . . .). 

V w , w f ~ n f ( R d )  and w n w ' = 0  

For a given V as above we also define 

= 8 v ( w v w ' ) - ~ " ( w ) - % , ( w ' ) .  

For w ' e R ( R d )  we also define 
g v ( w l w ' )  = lim % v ( w l w ' ( A n ) )  

n - c z  

where ( A n ) n  is an arbitrary monotonic sequence of bounded subsets of R d  such that 
U, A, = Rd,  if such a limit exists. For A c  R d  bounded and w E f l ( R d )  we define 

Z Z ( Z ,  P )  = 1 %(d77) exp[-P~d77/77 v w(A')) l  (2.5) 

P X ( Z ,  PIA) = ( zY(z ,  P ) ) - I  J: %(d77) exp[-P8d77177 v w(A") ) l  

ad'%) 

(2.6) 

where 

8d77177 v w ( h ' ) ) =  g"(77)+ g"(771w(Ac)) 
for any A E S ( A ) ,  provided the corresponding limits and integrals under consideration 
exist. 
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A probability measure p on {R, 9 ( R d ) }  is called a grand canonical Gibbs (GCG) 

measure corresponding to the interaction V, chemical activity z ( 2 0 )  and (inverse) 
temperature ,B iff the following hold. 

( i )  c c c l ) :  the limits (2.4)-(2.6) exist for almost every pair (7, ~ ) E R , ( R ~ ) O  
R ( R d ) ,  with respect to the measure ' T T ~ O ~ .  

( i i )  GCG2): in the sense of measures we have 

POP.;(Z, PI . )  = P 

for every bounded Bore1 A c R d ,  where (-) is the integration variable. 
(Of course cccl) and ccG2) are nothing more than the Dobrushin-Lanford-Ruelle 

equilibrium equations.) 
The set of all such measures we denote by %(z,  p, V). It is known that for the case 

of stable interactions the set % ( z ,  P, V) is non-empty for any z 2 0 and P 2 0 (Preston 
1976, Georgii 1979). With additional restrictions on V some uniqueness theorems are 
known (Dobrushin 1970, Dobrushin and Pecherski 1983, Klein 1982). Finally in the 
case of superstable interactions it is known that it is possible to select some special 
subset of %( z, P, V) of the so-called tempered Gibbs measures which has the structure 
of a Choquet simplex in the weak-convergence topology (Ruelle 1970, Gielerak 1985). 

In the following we will restrict the class of admissible interactions V to the case 
of the so-called R strongly regular iiiteractions which are defined as follows. Let V 
be an arbitrary montonically decreasing function on R ,  = {x E Rlx 3 0) which has the 
asymptotic form ~ J ( x )  - x - ~ - '  , for some E > 0 as x t W. The interaction V is called 
R strongly regular iff for any w l ,  w 2  E a,( R )  the following estimate holds: 

where Z d  means the integer lattice and n ( w ,  r )  denotes the number of particles belonging 
to the configuration w that are located in the unit cube Ur = {x E Rdlri 6 xi  < r, + 1). 

We will say that the configuration w E R  is tempered iff there exists a > 0 such that 
for sufficiently large IrI the following holds: n ( w ,  r )  6 a log Irl. We denote by R T ( R d )  
the set of tempered configurations. It is then clear from (2.7) that for any IAI <CO and 
W ' E  R T ( R d )  the limit (2.4) exists and is finite for any R strongly regular interactions 
V. Assuming, moreover, that V is superstable we know that the set s2'(Rd) is of 
measure one for any infinite-volume superstable solution of G C G ~ )  and G C G ~ )  

(Lebowitz and Presutti 1976). For finite volume ~ A ~ < c o  the measure p x ( z , P I - )  is 
completely described by its correlation functions which are defined by 

xexp[-P%v((x)n v (Y)ml(xn) v ( Y ) m  v @(A'))]  

where we have used standard abbreviations 

( X I ,  = ( X I  3 . . . , xn)  

d(x),  = d x , O .  . .Odx, 
n 

x.z(x)n = IT X \ ( X O  
,=1 

and x,, is the characteristic function of the set A. 

(2.9) 

(2.10) 

(2.11) 
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It is known that certain sorts of convergence of the correlation functions yield the 
weak convergence of the corresponding Gibbs measures (Ruelle 1969). In particular, 
the uniform convergence on compacts (in R n d )  induces the weak convergence of the 
corresponding Gibbs measures. 

Following Moraal (1981) we have derived the following identities between the 
conditioned correlation functions (2.8): 

P X ( Z ,  Pl(x)ri) = Z X A ( X ) f l  exP[-Ps:((x),lo(Ac))l 

for n = 1, where we have used 

(x): =(x* ,  . *.,&I) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

where ( j ) q  is an arbitrary q element subset of ( y k )  and finally 

8 L( ( x ) n I w (A' ) ) = 8, (xi I ( X  1 v w (A' 1). (2.16) 

According to a well known strategy we will discuss these identities in terms of the 
resolvent equation in a suitable Banach space which we will now define. 

Let 93* be the Banach space consisting of all sequences ff = (ffl((x),,)) where, for 
each n, fn is a measurable function equipped with the norm 

I l F l l E  = "P 5- esssug I f n ( ( x ) n ) l  (2.17) 

where the positive real number 6 > 0 will be chosen later. In the space B, let us define 
the operators KT and K, formally by 

( ~ ? f f ) ~ ( ( x ) J  = n e x ~ [ - P ~ " ( ( x ) ~ I w ( ~ ' ) ) l  

( x ) , , c R  

X A d ( Y ) k ~ e ( X i l 0 I ( Y ) k ) ( n ~ f f ) k ( ( Y ) k )  (2.18) 
k = l  k .  

( K d ) I ( ( x ) l )  = f A 1 d(Y)kze(XlIml(Y)k)fk((Y)k) 
where ll, acts in B, as 

(2.19) 
k = l  k .  

k 

( n , F ) k  = n X . \ ( x t ) f k ( ( x ) k )  
, = I  
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(2 .20)  

We also define certain vectors from the space E!,: 

aX(x)1= ~ ~ ~ P ~ - P ~ " ~ ~ l l ~ ~ ~ c ~ ~ l x * ~ ~ l ~ ,  0, .  *I  
(Y,(X)I = (1 ,0,0, .  . .). 

(2 .22)  

(2 .23)  

Then identities (2 .12)  and (2 .13)  can be rewritten formally as 

where 

Dejinition. An interaction V is called M regular iff there exist constants P and Q 
(possibly depending on P )  such that 

V k a l ,  n z  1: Ix(xII(x)',I(y)k)I d(y)ks Q k  ( 2 . 2 6 ~ )  

e x p [ - P ~ ~ ( ( x ) , l ( y ) k ) l s  p. ( 2 . 2 6 b )  

(XI,> 

( X I  m (  >') k 

Lemma 2.1. Let V be stable and M regular. Then the operator 56,  is a bounded 
operator from B, to B, with the following estimate on its norm: 

ll k l l s  s pt-' exp(tQ). ( 2 . 2 7 )  

We omit the proof because of its simplicity (see also Moraal 1976) .  

Now we are ready to formulate our main result. Let $56,) denote the part of the 
spectrum of the operator 56,  (in the space B,) that lies in the set of physical values 
of z, i.e. on the real semiaxis { z  E C'/Im z = 0, Re z > 0} = R,?. 

Theorem. Let V be a stable M regular and R strongly regular many-body potential. 
Then for every value of the chemical activity z, such that z E R, and z-' E G(Km), 
there exists at most one tempered grand canonical Gibbs measure in the set %T( z, P, V). 
Moreover, this unique state is analytic in z in the sense that all its correlation functions 
are analytic for z-' E %(EL). 

Corollary 2.2. Let V be additionally superstable. Then for any z :  z-' & sp(56,) the set 
% T ( ~ ,  P, V) consists of exactly one point ,um(z, P )  which is analytic at z. 

t It is clear that the theorem formulated below is valid for any complex z-' E spM,. However the physical 
meaning of the corresponding Gibbs measure for complex or negative values of z is not obvious. 
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Remark. In the formulation of this theorem we have to use the phrase 'at most one 
state' because we have such poor control on the support properties of the stable (but 
not superstable) interactions. 

The theorem locates the set of possible values of z which are critical on the spectrum 
of K,. Note that K, depends on p so that in general $K,) also depends on p. By 
means of results established in Moraal (1976, 1977, 1981) and Zagrebnov (1982a) we 
obtain the following corollaries. 

Corollary2.3. Let V=(V, ,  V2,0,0, .  . . ) b e s u c h t h a t e x p ( - p V , ) ~ L , ( R ~ ) ,  V2issuper- 
stable and regular, and such that 

C ( p )  = 11 - exp( -pV,(x))l dx < oi). (2.28) 

Then for any z 5 0 there exists a unique tempered Gibbs state in the set %'(z, p, V) 
which is analytic in z E R,. 

I 
Remark. In order to prove this corollary we have to modify the definition of the 
corresponding operators 56 :, K, by composing them with the index-juggling operator 
of Ruelle (1969). So we can say that this is really a corollary of the proof of the 
theorem rather than an immediate consequence of it. 

Corollary 2.4. Let V=(V, ,  V,, V3, . . . )  be such that exp(-V,)EL1(Rd), Vk30,  for 
k > 1 and moreover V is R strongly regular. Then for any z 3 0 there exists exactly 
one tempered Gibbs state in the set %=(U, p, V). Moreover, this state is analytic on 
the Re z > 0 axis in the sense that all its correlation functions are analytic there. 

3. Proof of the main theorem 

In this section we prove our main result stated as the theorem in the previous section, 
and we outline proofs of the corollaries listed there. Let us start with an exposition 
of the main ideas involved in the proof presented below. As a starting point we use 
the observation that the operators Ky and K , differ only multiplicatively by a factor 
which depends only on the energy of the configuration of particles located at A with 
the configuration @(A') .  From the R strong regularity of the interaction V it then 
follows that locally this factor tends to zero in a suitable sense (see lemma 3.1 below). 
Then we look at the duals of the operators Wy and K, (see (3.10)) and we find that 
in the limit A = R d  the corresponding dual operators *Kz and *K, exist, *Kz = "K, 
and moreover the convergence *Wy + *K, is in the sense of strong operator conver- 
gence. This yields the strong convergence of the corresponding resolvents. In this way 
we obtain the convergence py + pm in the weak-* topology of the space B,. Then this 
convergence is increased to the componentwise, uniform convergence on compacts 
and this yields the weak convergence of the corresponding Gibbs measures. The last 
step is achieved by using the Mayer-Montroll equations. 

Remark. The idea of using dual space techniques appeared first in Ruelle (1970) and 
then was applied in a more explicit form in Zagrebnov (1982b). For other applications 
to similar problems see also Gielerak (1986, 1987a, 1987b). 
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The Banach space BE introduced above is the dual of the Banach space *BE consisting 
of all sequences of measurable functions q = ( $, , (x)~)  equipped with the norm 

Then the pair of Banach spaces (*Bc, Bc) forms a dual pair of Banach spaces. 
In the space B, let us define a linear bounded operator k, by the following formula: 

Then we have 
K i  =IIAoexp[-p8:( -lw(Ac))]okmoII,, 

= II.,oexp[-p8\( .Iw(Ac))]ok,, 
and also 

where ex 
Km = exp[-P8\((x),)lok, 

[-p8\((x),lw(Ac))] acts as a multiplication o 

(3.3) 

(3.4) 
erator and U,, is defined by 

We show that there exist operators "k, and *k, acting in the space *BE such that 
V $ E * B ~  and ff E B ~ :  

(3.6) 

and also 

({*k.+xP[-P8:(. * . l 4 A C ) ) I O ~ A M  0 = ($9 K?J>. (3.7) 

(*k,oexp[-P8:(. . .)I$, = (q, K d )  (3.8) 

(3.9) 

Similarly 

where (Y7 [F) means the canonical pairing, i.e. 

(9, O =  f J d(x )nqn( (x )n ) fn ( (x )n ) .  
n = l  

A simple calculation quickly verifies that the following expression for the dual operator 
* k, is valid: 

Lemma 3.1. Assume that V is R strongly regular. Let w E Cl'( R d )  and let us denote 

~ Y ~ ( A C ) )  = [ ( X,,)(x). e~P[-~a~(i~l)~(x)~w(~c))i] n = 1 , 2 ,  .. (3.11) 

and 

8' = [exp[-pg'(w = @ ) I I n = I , * , .  .. (3.12) 
Then for any compact A c  R d  we have 

lim, l lIIA(8'(w(Ac))  --8')IlE = 0. (3.13) 
'1 t R 
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Proof: Taking w E nT(Rd) we note that 

for some constant a '  and for fixed r, from which it follows that 

SUP 1(81(w(A)))nl<m (3.15) 
A I 

and now the claim follows easily from the assumed decay of qf. 

Lemma 3.2. Let V be regular in the sense of (2.26) and R strongly regular. Then for 
any w E RT( R d  ) we have 

s -  lim, (*K;-*K,)=0. (3.16) 
,I t R 

The strong convergence proved in lemma 3.2 sometimes yields the strong convergence 
of the corresponding resolvents in the space *BE.  

Corollary 3.3. For any z E @: z-' @ sp(*K,) and any w E RT(Rd)  we have the strong 
convergence 

(3.17) 

assuming the potential V is regular as before and that the spectrum of K: does not 
contract?. From the Phillips theorems we know that 

(3.18) 

s - lim, (1 - Z*K;)-' = (1 - z*K,)-' 
I t R  

sp *w; = sp K; sp *K, = sp K, 

t Taking into account the following formula: 

(1 - z*H?) - '= (1  -z*H,)-'[l+z(*K,-"M";)(l -z*M,)-']-' 

it follows that for A sufficiently large to make z l l *Kx - *K,l/ less than the norm of (1 - z*M,)-' which, by 
definition, is a bounded operator whenever z-' E sp K,, we see that the hypothesis about the spectrum of 
K: is not necessary whenever *K: + *W, in the norm. This was pointed out by a referee and is well known. 
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and for z-'& sp K: we have 

[ ( l  - zK:)-']* = (1 - z*K:)-' 

sp K, we have 

[( 1 - zK,)-']* = (1 - z*K,)-'. 

(3.19) 

and for z-' 

(3.20) 

For the Phillips theorems see Yosida (1966). We are now ready to prove the 
following proposition. 

Proposition 3.4. Let V be regular in the sense of (2.26) and R strongly regular, and 
let z be such that z-'& sp K,. Then for any w E a'( R d )  we have 

(3.21) 

= p,( z, p ) df = z ( 1 - ZK,) - ' a,. 

where w-* means convergence in weak-* topology of the space B,. 

ProoJ: Firstly, suppose that the spectrum of K: does not contract. Taking + E  *B, in 
an arbitrary way we have 

= O  

where we have applied corollary 3.3 and the simple verifiable fact that ay+ a ,  in the 
weak-* topology of the space B,. However, in general the spectrum of the operator 
K: can contract (Reed and Simon 1972). In this case we proceed in the following 
way. From the Kirkwood-Salsburg identities (2.24), (3.21) and the definitions of the 
dual operators we get 

V ((1 -z*K,)W, ( p ~ - p , ) ) = ( z ( * ~ ~ - * ~ , ) + ,  pY)+z(T, a:-&=). (3.22) 
Y€*B< 

From the regularity of the interaction and the Banach-Alaoglou theorem it follows 
easily that { p z }  forms a *-weakly precompact set in B,. Let p A  be any of the 
accumulation points of this set. Assuming z-'& sp K,  then from lemma 3.2, (3.22) and 
the Phillips theorem, and by the fact that ay+ a ,  in the weak-* topology, it follows 
that p: + pm and, moreover, that the convergence has to be understood in the weak-* 
topology of the space B,. 

Repeating the procedure which led us to the Kirkwood-Salsburg identities we 
derive the Mayer-Montroll-like identities, for py(z, P ) :  

P : ( z, P I ( x  1 n 1 = ZXA ( x 1 n exp[ - P i% V (  (x 1 n I ( 1) 1 

(3.23) 
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and for pm(Z, P ) :  

where the Mayer-Montroll kernels A t ( .  1 .  ) are given by the following formulae: 

Lemma 3.5. For each fixed (x),  E Rd" the map 

(xn) + [ ( I /  k ! ) &  ((x)n I ( ~ ) k  ) I k =  1.2, ... 

takes values in the space *B, and we have the following estimate on its norm: 

*11[(1/ k!)d((x),I(y)k)lk=1,2 ,... 1/56 p n  exp(O(l)Q)* (3.26) 

Proof: We start with the estimate 

(3.27) 

where c is some constant. From this the estimate (3.26) easily follows using the 
definition of the norm * 11 1 1 5 .  To prove (3.27) we observe that the Mayer-Montroll 
kernel can be rewritten in the following way: 

where we have denoted 

(3.28) 

(3.29) 

(3.30) 

(3.31) 
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Now we use the 
the ith particle 
Therefore using 

~ observation that the sum X s i  gives exactly the interaction energy of 
with the group of particles composed of ( X ,  - (xl ,  . . . , xi-l)) v Yq. 
assumption (2.266) on the potential V we can bound 

n 2 (P i  + P i - ] )  G O( 1)P". 
i = 2  

Using assumption ( 2 . 2 6 ~ )  we can estimate the difference: 

(3.32) 

(3.33) 

from which the estimate (3.27) then follows. 

Now we are ready to prove the basic convergence result. 

Proposition 3.6. Let V be regular in the sense of (2.26) and R strongly regular, and 
let w E OT( R d ) .  Let z E C' be such that z- 'E sp K,. Then for any compact A c Rmd 
and any n 3 1 we have 

l i m d  l\xb(x)fl(P:(z, -PE(', P i ( x ) ~ ) ) l l L g ( R " d )  =" (3.34) 
A t R 

Proof: Calculate the difference px(z, ,!I(x),) -pm(z, pl(x),) in terms of the Mayer- 
Montroll identities (3.23) and (3.24) and then use lemma 3.4 together with lemma 3.5 
and the easily verifiable fact that 

limd Ilxb{exP[-p~((x)nI(x), v w(A'))l  -exP[-p~((x)nl(x)n)l}IIL"(R"'d) = 0 (3.35) 
A T R 

for any w E a'( R d )  and the potential V fulfilling our regularity properties. 

Remark. In the case when each vk is also continuous in its variables (x)k we can 
replace the L" norms by the sup and this shows that in this case we have standard 
uniform convergence on compacts. Taking into account the introductory remarks at 
the beginning of this section, we see that we have essentially finished the proof of the 
theorem. 

Let us proceed to prove corollary 2.3 and corollary 2.4 from § 2. 

Proof of corollary 2.3 and corollary 2.4. The following lemmas proven in Moraal (1975, 
1977, 1981) combined with the theorem gives the proofs. 

Lemma 3.7. Let V = ( V, , V,,  0, . . .) be stable, regular and R strongly regular, and such 
that exp(-pV,) E L I ( R d ) .  Then the spectrum of the corresponding Kirkwood-Salsburg 
operator is given by 

spK,={z€c'/z~(z-',p)=o}. (3.36) 
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Pro05 See Moraal (1975). 

Lemma 3.8 (Moraal 1981). Let V =  (V,,  V2,  . . . , V,, . . .) be stable, exp(-pV,) E 

L,(Rd),  V, 2 0 for k >  1, and moreover let V be R strongly regular. Then the spectrum 
of the corresponding Kirkwood-Salsburg operator coincides with the set {z E 

A simple application of the Jensen inequalities gives Z,( zF1, p )  > 0 for any z E R , ,  
and from the assumption exp(-pV,) E L1(Rd) and the stability of V it follows that 
Z,(z, p )  < 03 for any z E @' in both cases. 

@llzm(z-l, p )  = 0). 

For the proof of corollary 2.3 we have to redefine the Kirkwood-Salsburg operator in 
order for V to fulfil the regularity condition (2.26). According to Ruelle there exists 
an index-juggling operator A choosing the index of the first particle x1 in such a way 
that we have 

f V,(x, -xi)  3 -2B 
i = 2  

(3.37) 

where B is the stability constant of V2. Then for the operator km = K, A the regularity 
condition (2.26) is fulfilled. For (2.26a) we have to assume that 

r 
(3.38) 

but this follows from the assumed strong R-regularity of V. The spectrum of the 
operator k, with V, = 0 but IR/ < 03 has been investigated by Zagrebnov (1982) and 
there it is proved that the union of the point spectrum and generalised eigenvalues of 
the operator k,, is contained in the set {z E C'IZ,,(z-', p )  = 0}, and for the case of a 
superstable interaction V, the remaining piece of the spectrum, i.e. the residual 
spectrum, disappears. His analysis carries over into our case with the assumption 
exp(-pV) E L'(Rn).  Finally, the proof of the existence of the dual operators (ky)*, 
(km)* and its strong convergence has been demonstrated in Zagrebnov (1982) and 
Gielerak (1987b). 
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